

ENGINEERING DATA

HOT WATER CAPACITIES, CALCULATIONS AND CORRECTION FACTORS

Use the following two tables to determine

- 1. Heating Capacity (MBH)
- 2. Leaving Air Temperature (LAT)
- 3. Water Flow in Gallons per Minute (GPM)
- 4. Water Pressure Drop (WPD) in feet of water

The performances reflected in these tables are based on the following:

- Entering Water Temperature (EWT): 200°F (93°C)
- Water Temperature Drop (WTD): 20° (11°C)
- Entering Air Temperature (EAT): 60° (16°C)

TABLE A - Low Speed Fan Setting

			Leav	ing	Wate	er Flow			
Size	Approx. Fan	MBH Output	Air Te (LA	•	Gal. per Minute	Liters per Minute	WPD feet of water	Air \	/olume (m³/hr)
18/24	1,100	13	104°	40°	1.31	4.96	0.06	270	459
23/33	1,100	17	107°	42°	1.72	6.49	0.01	330	561
44/62	1,100	32	113°	45°	3.23	12.22	0.08	560	952
60/85	1,100	45	112°	44°	4.54	17.18	0.23	800	1,359
78/110	1,100	58	109°	43°	5.85	22.15	0.48	1,100	1,869
96/120	850	72	115°	46°	7.26	27.49	0.95	1,200	2,039
140/175	850	105	115°	46°	10.59	40.09	1.90	1,750	2,973
190/238	850	141	119°	48°	14.22	53.84	4.50	2,200	3,738
300/350	850	230	116°	47°	23.20	87.82	3.30	3,800	6,457

TABLE B - High Speed Fan Setting

			Leav	ring	Wat	er Flow			
	Approx. Fan	МВН	Air Te	•	Gal. per	Liters per	WPD	Air Volume	
Size	rpm	Output	°F	°C	Minute	Minute	feet of water	cfm	(m³/hr)
18/24	1,550	19	104°	40°	1.92	7.27	0.11	400	680
23/33	1,600	24	104°	40°	2.42	9.16	0.04	500	850
44/62	1,600	45	108°	42°	4.54	17.18	0.15	860	1,461
60/85	1,600	64	107°	42°	6.46	24.45	0.45	1,250	2,124
78/110	1,600	82	106°	41°	8.27	31.30	0.95	1,650	2,804
96/120	1,080	89	113°	45°	8.98	33.99	1.30	1,550	2,634
140/175	1,080	131	112°	45°	13.22	50.04	2.80	2,300	3,908
190/238	1,080	177	117°	47°	17.86	67.60	7.00	2,850	4,842
300/350	1.080	276	114°	45°	27.84	105.37	4.80	4.750	8.071

TABLE C - Hot Water Correction Factors for EAT and EWT different from cataloged information

Enter	ing Air	Entering Water temperature with 20° Temperature Drop											
	erature AT)	100	120	140	160	180	200	220	240	260	280	300	
30°F	-1°C	0.462	0.615	0.769	0.923	1.077	1.231	1.385	1.538	1.692	1.846	2.000	
40°F	4°C	0.385	0.538	0.692	0.846	1.000	1.154	1.308	1.462	1.615	1.769	1.923	
50°F	10°C	0.308	0.462	0.615	0.769	0.923	1.077	1.231	1.385	1.538	1.692	1.846	
60°F	16°C	0.231	0.385	0.538	0.692	0.846	1.000	1.154	1.308	1.462	1.615	1.769	
70°F	21°C	0.154	0.308	0.462	0.615	0.769	0.923	1.077	1.231	1.385	1.538	1.692	
80°F	27°C	0.077	0.231	0.385	0.538	0.692	0.846	1.000	1.154	1.308	1.462	1.615	
90°F	32°C	0.000	0.154	0.308	0.462	0.615	0.769	0.923	1.077	1.231	1.385	1.538	
100°F	38°C	0.000	0.077	0.231	0.385	0.538	0.692	0.846	1.000	1.154	1.308	1.462	

TABLE D - Hot Water Correction Factors for WTD different from cataloged information

Water Temp. Drop	5°F	10°F	15°F	20°F	25°F	30°F	35°F	40°F	45°F	50°F	55°F	60°F
MBH Correction Factor	1.25	1.15	1.08	1.00	0.95	0.89	0.87	0.84	0.80	0.78	0.74	0.73
GPM Correction Factor	5.00	2.30	1.44	1.00	0.74	0.59	0.49	0.40	0.35	0.30	0.27	0.24

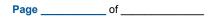
TABLE E - Hot Water Conversion Factors for Water Flow different from cataloged information

% Water Flow*	25%	50%	75%	100%	125%	150%	175%
MBH Correction Factor	0.80	0.89	0.96	1.00	1.04	1.07	1.10

Page	of
ugu	

HOT WATER CAPACITIES, CALCULATIONS AND CORRECTION FACTORS

The heating output of any particular installation is a function of many different factors. It is very seldom that any installation will exactly match the conditions described in the tables on the previous page. For those installations, correction factors must be used to determine heating output and other values.

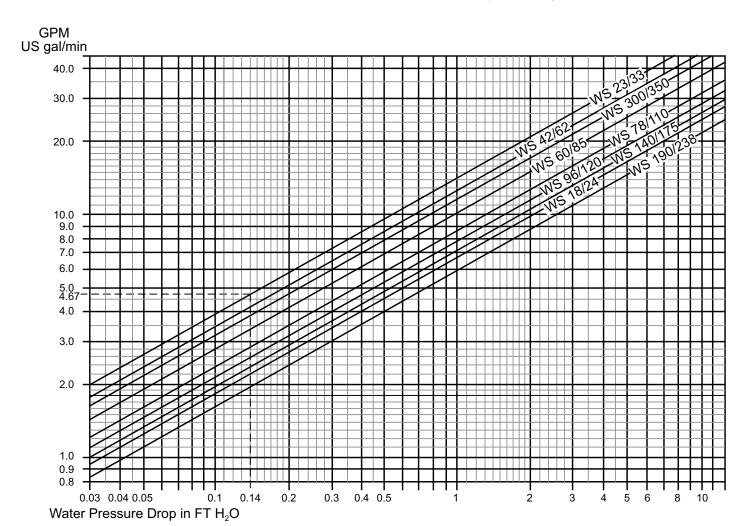

Below is an example of conditions different from those given in TABLE A and B on the previous page. Following are procedures for determining heating output and other values at conditions other than "cataloged" conditions.

Example: Unit Reznor Model 23/33

Entering Water Temperature (EWT) 160°F
Entering Air Temperature (EAT) 40°F
Water Temperature Drop (WTD) 10°F

I.	In TABLE B find the Heating Capacity for "catalog" conditions with High Speed Fan Setting	24,000 BTUH		
II.	Determine Heating Capacity for EWT at 160°F and EAT of 40°F			
Ī	Find the correction factor in TABLE C that satisfies the conditions listed. In this instance, it is 0.846.	24,000 BUTH x 0.846 = 20,304 BTUH		
	Multiply original BTUH output by the correction factor.			
III.	Determine Heating Capacity for WTD of 10°F			
	Find the correction factor in TABLE D that satisfies the conditions listed. In this instance it is 1.15.	20,304 BTUH x 1.15 = 23,350 BTUH		
	Multiply BTUH output by the correction factor.			
IV.	Determine Gallons per Minute (GPM) at 200°F EWT, 60°EAT, but with WTD of 10°F	2.42 GPM		
	Find the GPM from TABLE B for "catalog" conditions with High speed Fan Setting	2:42 GFWI		
	In TABLE D find the GPM Correction Factor for WTD of 10°F. In this case it is 2.30. Multiply original	2.42 GPM x 2.30 = 5.57 GPM		
ł	GPM by the correction factor.			
	Note: This formula applies only to units with 200°F EWT and 60°F EAT. For all other applications, use the formula shown (right):	$GPM = BTUH \div (500 \times WTD)$		
	Determine GPM for installation described in step III above at 10°F	23350 ÷ (500 x 10°F WTD) = 4.67 GPM		
V.	Determine Water Pressure Drop (WPD) in Feet of Water at 10°F WTD	23330 - (300 x 10 1 W1D) - 4.07 GFW		
٧.	Find the GPM from step IV above	4.67 GPM		
	On the Heat Exchanger Resistance Chart on page 6, find the WPD at 4.67 GPM on the left side axis.			
	Follow it until it meets the line for Model WS23/33. From that point, follow the line down to the bottom	0.14 FT H ₂ O (as marked)		
	axis to determine the WPD at 176°F mean water temperature.	0.14111 ₂ 0 (as marked)		
i	Determine the Correction Factor (K).			
i	The above example started with an EWT of 160°F and WTD of 10°F. That would result in water	$(160^{\circ}F + 150^{\circ}F) \div 2 = 155^{\circ}F$		
	temperature at 150°F as it leaves the heater. Find the mean (average water temperature).	,		
İ	Find the Correction Factor (K) for the value nearest 155°F. At 158°F the Correction Factor (K) is 1.05.	0.44 FT II O v.4.05 = 0.447 FT II O		
	Multiply 1.05 by the WPD found on the chart 0.14 FT H ₂ O.	$0.14 \text{ FT H}_2\text{O} \times 1.05 = 0.147 \text{ FT H}_2\text{O}$		
VI.	Determine Heating Capacity for water flow rate of 3.03 GPM	24,000 BUTH		
	Determine the Heating Capacity from TABLE B for "catalog" conditions with High Speed Fan Setting	24,000 B0111		
	Divide actual flow rate in GPM by cataloged flow rate found in TABLE B.	3.03 GPM ÷ 2.42 GPM = 125%		
	In TABLE E find the MBH Correction Factor for a flow rate of 125%. In this case it is 1.04. Multiply	24,000 BTUH x 1.04 = 24,960 BTUH		
	original MBH by the correction factor.	<u> </u>		
VII.	Determine Leaving Air Temperature (LAT) using the formula shown (right):	LAT = EAT+ BTUH ÷ (CFM x 1.085)		
	In TABLE B find the Air Volume (cfm) for "cataloged" model and apply it conditions described in Step	40°F + (23,350 BTUH ÷ (500 cfm x 1.085)) = 83°F		
	III above.	* ***		

To obtain Pressure Loss Feet of water for other GPM see the graphic data on page 6.



HEAT EXCHANGER RESISTANCE CHART

The following table indicates the Water Pressure Drop (WPD) in FT $\rm H_2O$ for each model for a mean water temperature of 176°F (80°C)

- Mean water temperature °F, °C
- Correction Factor K

°C	°F	K
50	122	1.15
60	140	1.10
70	158	1.05
80	176	1.00
90	194	0.95
100	212	0.89
110	230	0.83
120	248	0.78
130	266	0.72
140	284	0.67
150	302	0.61

Page	of

TERMS, ABBREVIATIONS AND FORMULAS

Following is a list of terms, abbreviations and formulas to assist in specifying the correct size hydronic heating equipment for a specific application. All terms and abbreviations

ATR	Air Temperature Rise - The difference between the Entering Air Temperature (EAT) and the Leaving Air Temperature (LAT) due to the amount of heat added.
BTUH	British Thermal Units per Hour - The common measure of heating output or capacity.
CFM	Cubic Feet per Minute - The volume of air moved through the heater.
COND	Condensate - The amount of water that results from removing heat from steam, measured in Pounds per Hour (lb/hr) - steam heat only.
EAT	Entering Air Temperature - The temperature of the air just before it passes through the heat exchanger.
EDR	Equivalent Direct Radiation - A measure of heat output measured in square feet - steam heat only.
EWT	Entering Water Temperature - The temperature of the water as it enters the heat exchanger - hot water heat only.
FPM	Feet Per Minute - The measure of the velocity of air as it leaves the heater.
GPM	Gallons Per Minute - The measure of the flow of water that passes through the heat exchanger - hot water heat only.
L	Latent heat of steam - steam heat only.
LAT	Leaving Air Temperature - The temperature of the heated air just after it passes through the heat exchanger.
LWT	Leaving Water Temperature - The temperature of the water as it leaves the heat exchanger - hot water heat only.
MBH	One thousand BTUH
PSI	Pounds per Square Inch - The measure of the pressure of steam in pipes - steam heat only.
RPM	Rotations Per Minute - The number of rotations the fan will make in one minute.
WPD	Water Pressure Drop - The resistance to the flow of water through a system created by friction between the water and piping - hot water heat only.
WTD	Water Temperature Drop - The difference between the Entering Water Temperature (EWT) and the Leaving Water Temperature (LWT) due to the amount of heat removed - hot water heat only.

ATR = BTUH ÷ (CFM x 1.08)

LAT = EAT + BTUH ÷ (CFM x 1.08)

GPM = BTUH ÷ (WTD x 500)

WTD = BTUH ÷ (GPM x 500)

COND = BTUH ÷ L

COND = EDR ÷ 4

EDR = BTUH ÷ 240 (at 2 psi only)

STEAM CAPACITIES, CALCULATIONS AND CORRECTION FACTORS

Use the following two tables to determine

- 1. Heating Capacity (MBH)
- 2. Leaving Air Temperature (LAT)
- 3. Condensate of water in lbs./hr.
- Heat output measured in square feet of Equivalent Direct Radiation:

1 ft² EDR = 240 BTUH at 2 psi steam

The performances reflected in these tables are based on the following:

- Steam pressure: 2 Pounds per Square Inch (psi)
 - Entering Air Temperature (EAT): 60° (16°C)

TABLE A - Low Speed Fan Setting

	Approx. Fan	МВН	Leaving Air Temp. (LAT)		Cond.	Sq.Ft.
Size	rpm	Output	°F	°C	Lbs./hr	EDR
18/24	1,100	18	121°	50°	19	75
23/33	1,100	23	124°	51°	24	96
44/62	1,100	44	132°	56°	46	183
60/85	1,100	60	129°	54°	62	250
78/110	1,100	78	125°	52°	81	325
96/120	850	96	134°	57°	99	400
140/175	850	140	134°	57°	145	583
190/238	850	190	140°	60°	197	792
300/350	850	300	133°	56°	310	1,250

TABLE B - High Speed Fan Setting

	Approx. Fan	МВН	Leaving Air Temp. (LAT)		Cond.	Sq.Ft.
Size	rpm	Output	°F	°C	Lbs./hr	EDR
18/24	1,550	24	115°	46°	25	100
23/33	1,600	33	121°	49°	34	138
44/62	1,600	62	126°	52°	64	258
60/85	1,600	85	123°	50°	88	354
78/110	1,600	110	121°	50°	114	458
96/120	1,080	120	131°	55°	124	500
140/175	1,080	175	130°	55°	181	729
190/238	1,080	238	137°	58°	246	992
300/350	1,080	350	128°	53°	362	1,458

TABLE C - Steam Correction Factors for Steam Pressure and EAT different from cataloged information

Entering Air		Steam Pressure - psi (saturated)												
	erature AT)	0	2	5	10	15	20	30	40	50	75	100	125	150
30°F	-1°C	1.19	1.24	1.29	1.38	1.44	1.50	1.60	1.68	1.70	1.90	2.02	2.11	2.20
40°F	4°C	1.11	1.16	1.21	1.29	1.34	1.42	1.51	1.60	1.60	1.81	1.93	2.02	2.11
50°F	10°C	1.03	1.08	1.13	1.21	1.28	1.33	1.43	1.51	1.58	1.72	1.84	1.93	2.02
60°F	16°C	0.96	1.00	1.05	1.13	1.19	1.25	1.35	1.43	1.50	1.64	1.75	1.84	1.93
70°F	21°C	0.88	0.93	0.97	1.06	1.12	1.17	1.27	1.35	1.42	1.55	1.66	1.76	1.84
80°F	27°C	0.81	0.85	0.90	0.98	1.04	1.10	1.19	1.27	1.34	1.47	1.58	1.68	1.76
90°F	32°C	0.74	0.78	0.83	0.91	0.97	1.02	1.12	1.19	1.26	1.39	1.50	1.59	1.67
100°F	38°C	0.67	0.71	0.76	0.84	0.89	0.95	1.04	1.12	1.19	1.32	1.42	1.51	1.59

TABLE D - Properties of Saturated Steam

	STEAM PRESSURE (PSIG)												
	1	1	2	4	6	8	10	15	25	50	75	100	125
STEAM PRESSURE (PSIA)	14.7	15.7	16.7	18.7	20.7	22.7	24.7	29.7	39.7	64.7	89.7	114.7	139.7
BOILING POINT OF STEAM °F	212	215.3	218.5	224.4	229.8	234.8	239.4	249.8	266.8	297.7	320.1	337.9	352.9
VOLUME OF 1 LB. OF STEAM CU. FT.	26.79	25.2	23.78	21.4	19.45	17.85	16.49	13.87	10.57	6.68	4.91	3.891	3.225
HEAT OF THE LIQUID BTUH	180	183.3	186.6	192.5	198	203	207.7	218.2	235.6	267.2	290.3	308.8	324.4
L - LATENT HEAT OF STEAM BTUH	970.4	968.2	966.2	962.4	958.8	955.5	952.5	945.5	933.6	911.2	894.2	880	867.8
TOTAL HEAT OF STEAM BTUH	1150.4	1151.6	1152.8	1154.9	1156.3	1158.6	1160.2	1163.7	1169.2	1178.4	1184.4	1188.8	1192.2

age _.	of	

STEAM CAPACITIES, CALCULATIONS AND CORRECTION FACTORS

The heating output of any particular installation is a function of many different factors. It is very seldom that any installation will exactly match the conditions described in the tables on the previous page. For those installations, correction factors must be used to determine heating output and other values.

Below is an example of conditions different from those given in TABLE A and B on the previous page. Following are procedures for determining heating output and other values at conditions other than "cataloged" conditions.

Example: Unit Reznor Model 23/33

Steam Pressure 10 psi Entering Air Temperature (EAT) 40°F

_		
l.	In TABLE B find the Heating Capacity for "catalog" conditions with High Speed Fan Setting	33,000 BTUH
II.	Determine Heating Capacity for steam pressure of 10 psi and EAT of 40°F	
	Find the conversion factor in TABLE C that satisfies the conditions listed. In this instance, it is 1.290. Multiply original BTUH output by the conversion factor.	33,000 BUTH x 1.290 = 42,570 BTUH
III.	Determine Leaving Air Temperature (LAT) using the formula shown (right):	LAT = EAT+ BTUH ÷ (CFM x 1.085)
	In TABLE B find the Air Volume (cfm) for "cataloged" model and apply it conditions described in Step II above.	40°F + (42,570 BTUH ÷ (500 cfm x 1.085)) = 118°F
IV.	Determine the condensate in pounds per hour (lbs/hr).	
	Divide the heating output by the Latent Heat of steam found in TABLE D at 10psi. In this case it is 952.5.	42,570 BTUH ÷ 952.5 = 44.7 lbs/hr of condensate
V.	Determine the Equivalent Direct Radiation (EDR) in square feet	EDR = 4 x condensate (lbs/hr)
	based on conditions in step IV using the formula shown (right):	4 x 44.7 lbs/hr = 179 sq. ft. EDR